Early brain injury linearly correlates with reduction in cerebral perfusion pressure during the hyperacute phase of subarachnoid hemorrhage

نویسندگان

  • Serge Marbacher
  • Volker Neuschmelting
  • Lukas Andereggen
  • Hans Rudolf Widmer
  • Michael von Gunten
  • Jukka Takala
  • Stephan M Jakob
  • Javier Fandino
چکیده

BACKGROUND It is unclear how complex pathophysiological mechanisms that result in early brain injury (EBI) after subarachnoid hemorrhage (SAH) are triggered. We investigate how peak intracranial pressure (ICP), amount of subarachnoid blood, and hyperacute depletion of cerebral perfusion pressure (CPP) correlate to the onset of EBI following experimental SAH. METHODS An entire spectrum of various degrees of SAH severities measured as peak ICP was generated and controlled using the blood shunt SAH model in rabbits. Standard cardiovascular monitoring, ICP, CPP, and bilateral regional cerebral blood flow (rCBF) were continuously measured. Cells with DNA damage and neurodegeneration were detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Fluoro-jade B (FJB). RESULTS rCBF was significantly correlated to reduction in CPP during the initial 15 min after SAH in a linear regression pattern (r (2) = 0.68, p < 0.001). FJB- and TUNEL-labeled cells were linearly correlated to reduction in CPP during the first 3 min of hemorrhage in the hippocampal regions (FJB: r (2) = 0.50, p < 0.01; TUNEL: r (2) = 0.35, p < 0.05), as well as in the basal cortex (TUNEL: r (2) = 0.58, p < 0.01). EBI occurred in animals with severe (relative CPP depletion >0.4) and moderate (relative CPP depletion >0.25 but <0.4) SAH. Neuronal cell death was equally detected in vulnerable and more resistant brain regions. CONCLUSIONS The degree of EBI in terms of neuronal cell degeneration in both the hippocampal regions and the basal cortex linearly correlates with reduced CPP during hyperacute SAH. Temporary CPP reduction, however, is not solely responsible for EBI but potentially triggers processes that eventually result in early brain damage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ginkgo biloba extract protects early brain injury after subarachnoid hemorrhage via inhibiting thioredoxin interacting protein/NLRP3 signaling pathway

Objective(s): To investigate the effect of Ginkgo biloba extract EGb761 in early brain injury (EBI) after subarachnoid hemorrhage (SAH) and its mechanism. Materials and Methods: The SAH rat model was constructed and pre-treated with EGb761.The neurological function, severity of SAH, water content of brain tissue, damage degree of the blo...

متن کامل

CORRELATION BE TWEEN ENDOTHELIAL INJURY AND CEREBRAL VASOSPASM FOLLOWING A DOUBLE SUBARACHNOID HEMORRHAGE IN THE RAT

While a wide array of pathological changes occur in cerebral arteries following subarachnoid hemorrhage (SAH), the most consistent is endothelial damage. Since the endothelium normally modulates reflexes that influence vascular tone, any damage to it may represent a significant contributor to cerebral vasospasm following SAH. This experimental study investigates the correlation between end...

متن کامل

Decompressive Hemicraniectomy, Intracerebral Hemorrhage, Malignant MCA Stroke, Traumatic Brain Injury, Aneurysmal Subarachnoid Hemorrhage, Intracranial Pressure, Herniation

6 ABSTRACT Increased intracranial pressure (ICP) secondary to severe brain injury is common. Increased ICP is commonly encountered in malignant middle cerebral artery ischemic stroke, traumatic brain injury, subarachnoid hemorrhage, and intracerebral hemorrhage. Multiple interventions – both medical and surgical – exist to manage increased ICP. Medical management is used as first-line therapy; ...

متن کامل

Experimental subarachnoid hemorrhage causes early and long-lasting microarterial constriction and microthrombosis: an in-vivo microscopy study.

Early brain injury (EBI) after subarachnoid hemorrhage (SAH) is characterized by a severe, cerebral perfusion pressure (CPP)-independent reduction in cerebral blood flow suggesting alterations on the level of cerebral microvessels. Therefore, we aimed to use in-vivo imaging to investigate the cerebral microcirculation after experimental SAH. Subarachnoid hemorrhage was induced in C57/BL6 mice b...

متن کامل

Cerebral Microdialysis Monitoring to Improve Individualized Neurointensive Care Therapy: An Update of Recent Clinical Data

Cerebral microdialysis (CMD) allows bedside semicontinuous monitoring of patient brain extracellular fluid. Clinical indications of CMD monitoring are focused on the management of secondary cerebral and systemic insults in acute brain injury (ABI) patients [mainly, traumatic brain injury (TBI), subarachnoid hemorrhage, and intracerebral hemorrhage (ICH)], specifically to tailor several routine ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2014